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A closed system of transport equations for a multi component gaseous 
mixture was found in [ll in the “13 moment” approximation in Grad’s 
method [21. If the interaction between the particles (and this includes 
Coulomb particles) can be described in terms of collisioas between pairs, 
an analogous system of epuatioas can be written for ionized gas composed 
of an arbitrary number of uncharged (neutral) and charged components. 
Thea, in contrast with [l], terms are introduced into the left-hand aide 
of the equation to express the effects of the electrical and magnetic 
fields. A similar system of equations for a fu14 ionized two component 
plasma has been discussed recently in 131. 

Normal equations of contlnulty. motion and energy serve as the lowest 
moments of the distribution function. Equations of motion for the sepa- 
rate gas components and the expressions for the tensors of viscous 
stresses and of thermal fluxes of particles, which are derived from the 
equation for second and third order moments, comprise a closed system 
which allow all the transport phenomena to be studied and the correspond- 
ing kinetic coefficients to be calculated. 

In this paper expressions have been obtained for viscosity and thermal 
particle flux tensors in a three component plasma (electrons, ions, 
neutrons and neutral particles). The derivation of the generalized Ohm’s 
ban Is dealt with for such a plasma taking into account thermal particle 
fluxes in the equations of diffusion. Expressions are obtained for the 
conductivity current along and transverse to the magnetic field includ- 
ing the conductivity due to pressure and temperature gradients. 

1. General system of equations. Significant simplification of 
the transport equations accrues if the assumption is made that the macro- 
scopic gas parameters hardly change over distances of the order of the 
mean free path and over a time interval of the order of the collision 
time [I]. Assuming the particles to be at the same temperature and 
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excluding phenomena associated with nonelastic collisions, we obtain the 
following general system of equations of transport for a multiform plasma 
within a magnetic field 

d, u, 
pa dt + grad pa + div ‘pi, - n,e,E’ - n,e,w, x B = (1.1) 

= - n, 2 I.Lzp &p-l (Wa - Wp) f -- mp 
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In these equations ma, e,, na, pa and uo are, respectively, mass, 
charge, density, mass density and mean macroscopic velocity of particles 
of the a-type, pa and ‘ca are the partial pressure and the viscous stress 
tensor of the a-components; T is the gas temperature and k the Boltzmann 
constant. ‘Ihe relative thermal flux of the a-components ha and mean re- 
lative velocity Wa are determined from the expressions 

h, = qar-+ppowcr, w==ua--u, U=l 
PZ PaUa (1.4) 

a 

where s, is the thermal flux of particles of the a-kind and u the mean 
mass velocity of the gas. In writing down (1.1) to (1.2) the following 
abbreviations have been made 

(~~)rm = $ (KrLm + Lr K”) - $ c’irm K’L’ 

and 

E’=E+uxB (1.5) 

where E is the electric field intensity, B is the vector of magnetic in- 

duction, saNr in (1.2) denotes an “adjustable” tensor. 

On the right-hand sides (1.1) to (1.3) there appear “moments of the 
relative collision integral” worked out with the help of the “13 moment” 
approximation as a function of distribution [l]. In this connection n 

4 
is the derived mass of particles of kind a and p, whilst the quantities 
a*, a#‘, b,+, b,+’ and <+ depend, in general, on the mass ratios of 
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the particles and also on the ratios of the various kinds of 

sections for a given type of collision, denoted respectively 
and C* 
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cross 

by A*, B* 

aaD = 1 _I- 0.6 2 AaP*, aa~’ = - (1 - 0.6 AaP*) 

2 

b = ,m,yLz,,2 1 
1 - 0.48 Bap* + 0.64 2 mp AP* + 1.20(;,91 (1.6) 

hap’ = - ,,“;m;Olz (2.20 - 0.48Bap* - 0.64AJ) 
(I 

gap = $c.p’-i 

is of the same order as the time between collisions of a and p type 
?Zticles. t For collisions between charged and neutral particles and be- 

tween neutral particles only T+ is connected in a simple manner with the 

binary diffusion coefficients @+I 1 (the first Chapman-Cowling approxi- 

mation [41). 

zap-l = 
np kT 

lLaP n @ap 11 

In particular, for particles represented by solid elastic spheres 

(1.7) 

(1.8) 

where Q 
ap 

is the collision cross section of a and fi type particles. Note 
that for so-called ‘Maxwellian” molecules 

A* = 5 / 6, B* = 3/4, C* = 516 (1.9) 

For the case of Coulomb interaction in working out the right-hand 
sides of (1.1) to (1.3) the divergence of the integrals for the collision 
cross-sections can be avoided by limiting the collision parameter to dis- 
tances of the order of the Debye screening length AD. Then we have 

For this case 

A 4 * = 1 - (2 In &&-l, B* = 1, c*=1/3 (1.12) 
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The system of equations (1.1) to (1.3) is 
viscous and thermal particle flux tensors in 
conductivity current 

used for determining the 
the plasma, and also the 

.i = 22 w,w, 
a 

First of all therefore values of -r are found from (1.2) the sum of 
which leads to an expression for the Yfull viscosity tensor T. The values 
found should be substituted in the left-hand sides of (1.1) and (1.3). 
Then the values of the thermal particle fluxes h 
solution of (1.3). The expressions obtained in t iis manner describe the Y. 

are found from the 

thermal transport both due to temperature gradient and due to the rela- 
tive motion of the components (diffusion). Terms proportional to div vu 
turn out to be insignificant as a rule. The total heat flux through the 

plasma is 

4 = 2 ha + $2 PaWa 
a a 

(1.13) 

In order to obtain diffusion velocities of the components wcr and the 
conductivity current j associated therewith the equation of motion for 
the a-components (1.1) appears to be fundamental. Bearing this in mind 
it is convenient to bring it into a form in which the derivative daua/dt 

is eliminated by using the equation of gas motion in its entirety* 

P-$+gradp+divx-jxB=O (1.14) 

where 
P=xPa, P=zPa, +=$+(UO) 

a a 

The result is that we obtain the following system of equations of 
diffusion in a multi-form plasma of diffusion in a multi-form plasma 

- gradpa- ( Fgrsdp)-(divx.-_div%)+ 

+n.e.E’+n.e.w.xB-_jxB= 

= na 2 PC&~-~ (Wa - Wa) + [ m, I;qng LO ($ ‘- % 2)] (1.15) 
B 

l In writing down (1.14) the condition of quasineutralness of the plasma 

is invoked .%a c = 0. 
aaa 
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(in (1.15) the small teRn (&I/& - c&u$dt 1 has been purposely omitted). 

The system of diffusion equations (1.15) together with the expressions 
found for w,, and by, and the obvious condition 

z manawa=O a 
(1.16) 

fully determines the value of the diffusion velocities of the components 
and can be used for deriving the generalized &n’s law which connects the 
conductivity current j in the gas with the gradients of the thermodynamic 
quantities and the values of the electric and the magnetic fields. In 
what follows attention will mainly be focussed on the case of a three- 
component gas consisting of electrons, one kind of ion and of neutral 
atoms. In these discussions the mass of an ion and of a “neutral” are 
considered to be equal. Indeed the solution is very much simplified be- 
cause of the small value of the ratio of electron mass me to the ion mass 
rnj or atomic mass ma, in the equations. As a result, for instance, the 
viscous tensor and the thermal electron flux turn out to be independent 
of the equations of the other components, whilst the corresponding quanti- 
ties for the ions and atoms are determined fmm the system of two equa- 
tions in which TV and he no longer appear. 

2. Viscous tensors. Equation (1.2) for the electrons, after 
neglecting terms of the order Q mJmi, can be written down thus 

(2.2) 

(u,=eB/m, 

Solution (2.11 has the same formal appearance as that of the Chapman- 
Cowling solution for a charged single-component gas [41. If B is directed 
along the x-axis the following is obtained for the viscous tensor com- 
ponent in Cartesian coordinates (suffix e has been dropped from the right- 
hand side for simplicity.) 

n,*= =-2T)e= 
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fi,u* = J-$2” = - 2rl 
1 + la/,&a C p _ .!_ 

2 (e”- euy) f on 1 
.n xv = n ux = _ 2”rl 

e e 1 + .yP 0%’ C exu 2 - exz - 
3 6x 1 

,xz=,zx=- 2rl e e 1 + d/s COY [ f?+e+n] 

(2.5) 

In these expressions 0 = /tie/ 1s the cyclotron frequency of the 
electrons. Note that in the expressions derived by Chapman-Cowling [4] 

an error has crept in in writing down u Yz: preceding the second term in 
e 

the square brackets the sign should be -, not +. In a worse case, as has 

been pointed out by Ileumann, Masur and de Groot [5] the Onsager com- 
patibility relations are violated. * 

Now write down (1.2) for the ion and “neutrals” cases. Again neglect- 

ing terms of the order m,!mi the following system of equations appears 

where 

qi = -+ Pi%, wl= [0.471*-l + -+(l + 0.6Aia') rta-1 +G$ m$~,.~l] 
i 

(2 7) 

I)a = + PaTa, 2,-l = 
L 
0.42,-l + t (I+ O.GAil) tai-1 + $ 2ra.q1 ] 

; (I- 0.6 At;), 
ZeB a=- @i =-, 
mi 

1 ei 1 = Ze (2.8) 

In the expressions for 7i-1 and -rael the last terms in the square 

brackets have been retained because *the ratio 

proportional to (me/miJ1’*, 

me~P,-l/mp~ i-l (p = i, a) is 
and not just the mass ratio a 9 one. 

On substituting Al= from the second of Equations (2.6) into the first 

we arrive at an equation for mi in a form corresponding to (2.1) ,but in- 

corporating different effective values of rl and o-r. Therefore the com- 

ponents of the viscous tensor of the ions along the coordinate axes are 

determined by expressions similar to (2.5) if, in the latter, the follow- 
ing substitutions are made 

l The author is indebted to V.B. Baranov who drew his attention to this 

point in [51. 
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i + araria-1 ZelBl ‘ci 
q = qr 1 - aZraqrrcl_‘rai-l ’ 

Q)f=-- 

mi 1 - alsarirb-l rap (2.9) 

‘Ihe expressions for me and wi agree with those found in [3] for this 
case for a fully ionized gas. 

‘Ike viscous tensor for neutral atoms is expressed in terms of vi from 
the second equation of (2.6). For the special case when jBj=O 

(2.10) 

‘Ihe expression for the viscous tensor of the gas as a whole is ob- 

tained by adding we, “i and la. 

3. Thermal currents OF fluxes. Equation (1.3) for the thermal 
flux of electrons, after neglecting terms of the order * m,/mi can con- 
veniently be written thus 

h 8 = - h,Re - (h, x (u~z;) (3.1) 

where 
h e = s Per:* (z;)-’ = 0.42,,-1+ 2.5 2 (1 - 0.48&“) Q-I 6 (3.2) 

P#S 

R,==gradT + --& f div se + 2 2 Q-~&J (w, - wp) 
d We 

l[he following expression is a solution to (3.1) 

h 
,h 

e= - 1 +(Wc*)a [R + en* (w*R) + R x WC*] 

(3.3) 

(3.4) 

(suffix e omitted for simplicity). 

The values of hi and ha are determined from the system 

hi - @%*t+a = -+R, + hixoiri*, h, = &,*ri,,-‘bi - I. R a 0 

where 

(3.5) 

w-9 
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(z$l = 0.4r,' + (-g -0.15&:+ 0.2OAc')tt,'+ 3 ; r&-l 

h Q = $&rag (3.7) 

(Ta*)-l = O*42Mm1 + (+-0+15BL* + 0.20A~')ta~-'+ 3$7..-' 

Rr=gradT + + f div ?si + s CCZ~-l (We - WJ 

R ,,=gradT+ g f div G + 2 CaiZa4-l (w, - w() 
a 

(34 

P = + - 0.15Bh’ - 0.20Ati,’ 

An expression for the ion thermal flux is derived from (3.5) as in 
the case of (3.4), by introducing these effective quantities 

lhe thermal flux of the neutral atoms is expressed in terms of hi 
from the second of equations (3.5). In particular when 1 B[ = 0 

(3.10) 

‘lhe total thermal flux in the gas is the sum of the corresponding 
partial fluxes based on (1.13). ‘Ihe general features of thermal transfer 
(transport) in directions perpendicular to and parallel to the magnetic 
field are similar to those described in [3,41. In particular, a term of 
the form R x wr' in the expressions for the thermal particle fluxes de- 
scribes the well known effects of Riggi-Lediuc and of Ettingshausen. 
Note that for a fully ionized gas the expressions for hc and hi corre- 
spond to those found in [31. 

4. Generalized Ohm’ s Law. It has been noted in the foregoing 

that in deriving the generalized ohm’s law the equations of motion (1.1) 
or the diffusion equations which are deduced from them (1.15) form the 
starting point or basis. According to the traditional method of deriving 
this law [6,7] (hydrodynamic approximation) the magnitude of the impulse 
transmitted by collisions between particles of the a kind with those of 
other components (right-hand side of (1.1)) is taken to be proportional 
to the respective differences of the macroscopic component velocities. 
A prominent feature of the “13 moment” approximation is the more accurate 
determination of this quantity as a result of which additional terms 
appear in the diffusion equations which are proportional to the relative 
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thermal flux of the particles. E9y taking these terms into account in the 
normal problem of multicomponent gas mixtures (absence of charged 
particles) improvement in accuracy of the coefficients of mutual diffu- 
sion (second approximation) accrues and likewise in the case of thermal 
diffusion (further details in [l]). The significance of the additional 
terms is therefore relatively small in the case of real potentials of 
interactions between molecules (cap < 0.2) (for ‘PCxwellian” molecules 

% 
= 0). 

‘lhe effect of Coulomb interactions between charged particles makes a 
more significant contribution, when j 

aQ3 
= - 0.6. When thermal fluxes are 

taken into account in the diffusion equations markedly improved accuracy 
in the conductivity value u is evident and it is also possible to con- 
sider the conductivity currents in terms of the temperature gradient. 

The derivation of the generalized &m’s Law for a three component 
plasma will now be discussed. Writing down (1.15) for the electron com- 
ponent we have 

- grad pa - n,eE’ - n,m,w, x tub = n,ms 
r 

q,-lVI + r,l Vi + ~0 h, PO 1 W) 
Here 

V r=wb--i, v*= wi- w. (4.2) 

TO -l = z,c1 + 2,-l, VO = grrQ-l + 6m r@#J-l (44 

(In (4.1) the term div xc has been omitted for simplicity because in 
most problems connected with plasma conductivity it has little signific- 
ance.) Introducing the degree of ionization 

ni a=--- 
ni + “0 

(4.4) 

and neglecting terms of the order c\r ne/mi, we have 

w, =- ; [(Pi + eo) v. + PoVil = v, + (1 - a) vi (4.5) 

It is easy to see that the expression for the thermal electron flux 
he (3.41 can be split into terms containing grad T, Ve and Vi. Then to 
determine the conductivity current from (4.1) 

j=-n&V, (4.6) 

it is essential to invoke one additional expression which connects the 
“slip” velocity of the ions Vi with the relative velocity of the ions 
and electrons V,. To do this, Equation (1.15) written down for the ion 
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component is used. Ikaring in mind that pi/p = a and niei = n,e, we have 

- (grad pi - u grad p) + n&3’ + TZ~M,W~ x tie + an,r~z,V, x CO, = (4.7) 

= -nem,r8~-1 V, + cei $ 
( e 1 

+ + niMi&-Wi + f nimi 
( 

f - 2 
> 

6iaGz-’ 

Add (4.1) and (4.7) and derive an expression for Vi thus 

+ (1 + 8) vi bwradp-_grad(~~+pdl - 2(li+e) &a($-+) (4.8) i a 
where 

(4.9) 

In order to obtain an explicit expression for Vi it is essential to 

substitute into (4.8) the expressions found above for the thermal 

particle flux. It is easy to see moreover that the corrections to Vt are 

proportional to <,,2 and c ia2, and amount, according to estimates, IS 

less than 2%. A rather larger contribution is made by the terms which 

are proportional to the temperature gradient, but the corrections on this 

account in the final expression for the conductivity current are but 

small. !3elow, therefore, contributions due to he, hi and ha are neglected 

in the interests of simplification in the expression for slip velocity 

Vi (for Maxwell molecules the contribution from these terms is strictly 

zero). 

Substituting Vi into (4.1) taking into account (4.5) and (3.4) it 

should be noticed that in the expression so obtained terms proportional 

to the small quantity E can be neglected everywhere when it is multiplied 

by oe (because me % B and 1 B 1 can take on arbitrary values). As a result 

we arrive at the following relation between conductivity current j and 

the parameters which represent the state of the gas 

Here 
Aj + Bj x m,zo - CO,Z~ (~,zo * j) = QO (D - H x O~G) (4.10) 

A=l- Ao 
1 + ra(qso)a 

+ 60(w?fo)2 B=l+r A’ 
1 + ra (yo)’ 

(4.11) 

c = a0 + r2 1 + $(“sro)’ 
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(4.12) 

D=E’+ 
+T Fadp6 - e 

a$ [grad 7’ + fb6ro (@6$, grad T)] 

n6elli, 
60 = y 

6 

In these expressions 

Aa = &TvoTor 

whilst the thermal diffusion constant aT is found from 

6 
aT = y Yore* = -$ Polo (4.15) 

. 

Equation (4.10) expresses the generalized Gun’s law for a partly ion- 
ized gas. If we put aT = 0 (4.10) transforms into the well known results 
of the literature (see for instance Formula (2.10) of [?I. Tt is easy to 

observe, incidentally, that by considering thermal particle fluxes in 
the diffusion equations (UT = 01, not only do additional thermal diffu- 
sion terns appear but noticeable corrections accrue to the magnitude of 
the electrical conductivity of the plasma CJ in the direction of, and 
transversely to, the magnetic field. Thus for a conductivity current j 
in the x direction parallel to the lines of force of the magnetic field 
we have 

where 

In the case of a weakly ianized gas, when Only the interaction :JetWeen 
the electrons and neutral particles is taken into account, A,, = 1.9 L,,‘, 
i.e. the correction in u does not exceed 8%. In another limiting case 
(fully ionized gas) taking into account electron-electron ,and electron- 
ion interactions leads to A0 = 0.464 when z = 1, i.e. CT almost doubles 
as compared with oO. This result agrees with the so-called “secsnd 
approximation” of ~a~~lan-~wli~~ in kinetic coefficients 141 and it 
agrees very well with t!le value of LT quoted Sy Spitster ES]. 

Finally let us deal with the expression for conductivity current 
transverse to the magnetic field, which is derived from (4.10). %ltiply- 
ing both right-hand side and left-hand side of (4.10) vectorially by 
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0~7~ and expanding doubly the vector product Y;e arrive at the result 

Q iL = A’ + BP (oez,,)’ [ADI - (woW@_ - (BD, + AHI) x @erol (4.18) 

where !$ and k$ are the respective vector components located in a plane 

perpendicular to the vector of the magnetic field intensity. 

In the absence of pressure and temperature gadients the coefficient 
of electrical conductivity for E’,L 5 can be written, down in complex 
form thus 

A- io,roB 

’ = a0 As + B’ (o,zo)s 
(4.19) 

and this agrees with the expression obtained for this particular case 

in C91. 
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